110kV張河變電站10kV母線開口三角保護(hù)出現(xiàn)單相接地信號,大約1s后,電容器速斷保護(hù)動作,當(dāng)檢修人員趕到現(xiàn)場,發(fā)現(xiàn)第一組電容器的外殼已明顯鼓肚、變形。分析了引起事故導(dǎo)致電容器速斷跳閘的原因,并對配套設(shè)備加以改進(jìn),增加必要的保護(hù)裝置,使無功補(bǔ)償裝置順利運(yùn)行。
1故障原因分析
該變電站補(bǔ)償電容5000kvar,分4組自動投切,每組電容器容量1250kvar,電容器型號為BAM11-1250-3W,電抗器接于電源側(cè)。4組電容器安裝一套總保護(hù)裝置:保護(hù)配置速斷、過流、過壓、失壓等保護(hù)。電容器內(nèi)部故障保護(hù)設(shè)置內(nèi)熔絲。配套設(shè)備包括:投切電容器為真空斷路器,安裝于10kV中置柜內(nèi),各分組為真空交流接觸器,金屬氧化物避雷器安裝于電容器母線上,電壓互感器TV并接于電容器首、末兩端,中性點(diǎn)與電容器中性點(diǎn)相連,一次線圈做放電用鐵芯電抗器接于電源側(cè),電抗率為6。
1.2電容器組故障分析
電容器組采用常用的星型接線方式,三相共體外殼接于同一鐵框架,框架接地。電容器內(nèi)部結(jié)構(gòu)為多個元件并聯(lián)的四串結(jié)構(gòu),并設(shè)置內(nèi)熔絲保護(hù),檢修人員與廠家人員對損壞的電容器進(jìn)行解剖,發(fā)現(xiàn)受損電容器的A、B相內(nèi)熔絲均熔斷了兩根,外包封破裂,經(jīng)過認(rèn)真分析,認(rèn)為一相熔絲熔斷兩根后,造成外包封損傷,在外包封受傷的情況下,長期運(yùn)行發(fā)展成對殼擊穿,并發(fā)展成單相接地。由于單相接地呈不穩(wěn)定電弧接地,使健全相產(chǎn)生過電壓而另一相也有兩熔絲熔斷,外包封受傷致使在過電壓作用下發(fā)展成對殼擊穿,由此形成相間短路,盡管保護(hù)可靠動作,但巨大的短路電流產(chǎn)生的熱效應(yīng),仍對電容器造成一定程度的損傷,使電容器外殼嚴(yán)重變形。
這起事故主要是內(nèi)熔絲熔斷未被發(fā)現(xiàn)而造成,引起內(nèi)熔絲熔斷的原因是電容器的過電流,而過電壓和高次諧波都可能造成電容器的過電流,由于電容器組的總保護(hù)設(shè)置過壓保護(hù),自動投切裝置按電壓和功率因數(shù)投切,因此由于系統(tǒng)異常,造成過電壓引起內(nèi)熔絲熔斷的可能性很小。但是由于電容器投切頻繁,盡管裝有金屬氧化物避雷器,分合閘引起的過電壓被限制在一定范圍內(nèi),但是操作過電壓的累積效應(yīng)可能對電容器造成損壞,引起內(nèi)熔絲熔斷。
另外由于電網(wǎng)中存在大量的非線性負(fù)荷,使得電網(wǎng)中諧波占有一定含量。110kV張河變電站除擔(dān)任城郊居民用電外,主要擔(dān)任工業(yè)供電,除幾條10kV工業(yè)專線外,其他10kV線路上還有一些小型化工廠、鑄造廠等工業(yè)用戶,這些用戶都可能產(chǎn)生諧波。盡管每戶產(chǎn)生的諧波很少,但可以匯集成較大的諧波電流饋入電網(wǎng),使電網(wǎng)的諧波水平升高,影響電網(wǎng)設(shè)備的安全運(yùn)行。由于此變電站的無功補(bǔ)償裝置,配置電抗率為6的串聯(lián)電抗器,6的電抗率雖然能對5次及以上諧波有抑制作用,但在3次諧波下使串聯(lián)電抗器與補(bǔ)償電容器的阻抗成容性,出現(xiàn)諧波電流放大現(xiàn)象,使電容器過負(fù)荷。盡管母線上以5次諧波為主,3次諧波含量不是很高,而裝設(shè)電容器后,容性阻抗將原有的3次諧波含量放大,可能造成內(nèi)熔絲熔斷。由于總保護(hù)按四組電容器額定電流的1.3倍整定,而4組電容器全部投入的情況極少。當(dāng)某一段時間內(nèi)諧波含量偏高時,總過流保護(hù)不能動作,造成某相內(nèi)熔絲熔斷,而內(nèi)熔絲熔斷后不能被及時發(fā)現(xiàn),導(dǎo)致事故擴(kuò)大,造成速斷跳閘。
從保護(hù)配置來看,電容器內(nèi)部故障的保護(hù)只設(shè)置內(nèi)熔絲保護(hù),而并未設(shè)置導(dǎo)致事故擴(kuò)大的后備保護(hù)——不平衡電壓保護(hù),使內(nèi)熔絲熔斷后不能及時發(fā)現(xiàn),造成速斷跳閘事故,因此,保護(hù)配置不完善是造成電容器事故擴(kuò)大的主要原因。
另外,不定期測量電容量也是造成事故擴(kuò)大的原因之一。由于電容器內(nèi)部裝置最直接的反應(yīng)是電容量的變化,而電容量測量手段落后,進(jìn)行電容器電容量的測量時,需采用拆除連接線的測量方法,不僅測量麻煩而且可能因拆裝連接線導(dǎo)致套管