液壓泵是液壓系統(tǒng)的心臟,其故障診斷是液壓系統(tǒng)故障診斷的重要部分。由于流體的壓縮性、泵源與伺服系統(tǒng)的流固耦合作用及液壓泵本身具有大幅度的固有機(jī)械振動(dòng),使得液壓泵的故障機(jī)理復(fù)雜,故障特征提取困難,故障診斷的模糊性強(qiáng)。大量的液壓泵故障診斷數(shù)據(jù)表明,通過泵源出口檢測到的故障信號(hào)常被干擾信號(hào)淹沒,單一故障檢測信號(hào)常呈現(xiàn)出強(qiáng)的模糊性,采用常規(guī)的信號(hào)處理方法難以提升有效的故障特征。
從故障診斷學(xué)的角度來看,任何一種診斷信息都是模糊的、不精確的,對(duì)任何一種診斷對(duì)象,用單一信息來反映其狀態(tài)行為都是不完整的,如果從多方面獲取同一對(duì)象的多維故障冗余信息加以綜合利用,就能對(duì)系統(tǒng)進(jìn)行更可靠更精確的監(jiān)測和診斷。本文針對(duì)柱塞泵球頭松動(dòng)故障模式,通過在液壓泵出口配置振動(dòng)傳感器和壓力傳感器進(jìn)行故障檢測,通過小波分析進(jìn)行信號(hào)消噪處理,利用主成分分析提取有效融合信息,采用改進(jìn)算法的BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)液壓泵微弱信號(hào)或多故障的有效診斷。
1、液壓泵球頭松動(dòng)故障機(jī)理分析
由于制造誤差或液壓泵在工作過程中的壓力沖擊,常常使柱塞球頭與球窩沉凹變形使球頭與球窩間隙增大,從而產(chǎn)生柱塞球頭松動(dòng)的故障。
1.1基于振動(dòng)信號(hào)的故障機(jī)理分析
液壓泵缸體在轉(zhuǎn)動(dòng)過程中,柱塞在油缸中往復(fù)運(yùn)動(dòng)。當(dāng)缸體轉(zhuǎn)過一定角度時(shí),經(jīng)過上死點(diǎn)柱塞進(jìn)人吸油區(qū),球頭與柱塞發(fā)生一次碰撞;當(dāng)缸體轉(zhuǎn)動(dòng)經(jīng)過上死點(diǎn)后,球頭開始向柱塞方向運(yùn)動(dòng),球頭與柱塞發(fā)生相對(duì)運(yùn)動(dòng);當(dāng)轉(zhuǎn)過排油區(qū)時(shí),高壓油作用在柱塞上,使柱塞迅速向球頭方向運(yùn)動(dòng),從而又一次產(chǎn)生沖擊。缸體轉(zhuǎn)動(dòng)一周,球頭與柱塞發(fā)生兩次碰撞,經(jīng)過傳動(dòng)軸和軸承將能量傳遞到殼體上,故球頭松動(dòng)故障的振動(dòng)頻率為軸頻率的2倍。
1.2基于壓力信號(hào)的故障機(jī)理分析
球頭松動(dòng)對(duì)液壓泵出口的壓力脈動(dòng)也有影響。當(dāng)缸體轉(zhuǎn)過上死點(diǎn)時(shí),球頭向柱塞方向運(yùn)動(dòng),當(dāng)油缸的排油進(jìn)入卸荷區(qū)時(shí),球頭與柱塞還未發(fā)生碰撞,這時(shí)在高壓油的作用下,柱塞又向球頭方向運(yùn)動(dòng),球頭與球窩發(fā)生碰撞,產(chǎn)生振動(dòng)沖擊的同時(shí),碰撞通過柱塞作用在高壓油上從而產(chǎn)生一個(gè)壓力脈動(dòng),所以球頭松動(dòng)引起泵出口的壓力脈動(dòng)頻率與泵的軸頻率相同,由上述分析可知,如果球頭與球窩的間隙很小時(shí),球頭與柱塞的相對(duì)速度不大,產(chǎn)生的碰撞能量很小。當(dāng)間隙增大時(shí),產(chǎn)生的振動(dòng)能量就會(huì)增大,且具有周期變化的時(shí)變特性,殼體檢測的振動(dòng)能量通常分布于2倍軸頻率處;對(duì)于壓力脈動(dòng)信號(hào),能量主要分布在軸頻率處。
1.3球頭松動(dòng)故障診斷系統(tǒng)
針對(duì)球頭松動(dòng)故障,在液壓泵出口垂直方向安裝了2個(gè)加速度傳感器ax、a。檢測振動(dòng),1個(gè)壓力傳感器P檢測泵的壓力脈動(dòng)。由于液壓泵出口檢測到的振動(dòng)信號(hào)和壓力信號(hào)常被干擾信號(hào)淹沒,為了提取故障特征,對(duì)上述傳感器的檢測信號(hào)進(jìn)行小波消噪處理。
2、小波信號(hào)消噪處理
液壓泵的工作環(huán)境一般比較惡劣,其工況受環(huán)境的影響較大,通常在泵出口檢測到的信號(hào)含有很大的噪聲。試驗(yàn)表明,液壓泵出口檢測到的壓力信號(hào)和振動(dòng)信號(hào)體現(xiàn)出以下特點(diǎn):①信號(hào)的頻譜分布很寬、波形雜亂,規(guī)律性差;②時(shí)變與非平穩(wěn)性表現(xiàn)明顯。
因此,基于這兩種信號(hào)的故障特征提取非常困難,有必要對(duì)檢測的信號(hào)進(jìn)行消噪處理。
小波分析是目前較有效的信號(hào)處理方法,它可以同時(shí)在時(shí)域和頻域中對(duì)信號(hào)進(jìn)行分析,能有效地區(qū)分信號(hào)中的突變部分和噪聲,實(shí)現(xiàn)信號(hào)的消噪。
泵出口振動(dòng)信號(hào)及其小波消噪后的信號(hào),選取小波消噪的全局閾值為1.049。很明顯,檢測信號(hào)中包含了許多干擾信號(hào),很難簡單地利用檢測到的振動(dòng)信號(hào)進(jìn)行有效的故障診斷。為了消除干擾影響,經(jīng)過小波處理,可以有效地消除泵出口振動(dòng)信號(hào)中所包含的噪聲,有利于故障特征的提取。
3、信息融合故障診斷方法
信息融合是將多源信息加以智能合成,產(chǎn)生比單一信息源更精確、容錯(cuò)性和魯棒性更強(qiáng)的估計(jì)和判斷‘2’。由于液壓泵出口檢測到的信息微弱,易于被干擾所淹沒,很難利用單個(gè)傳感器的檢測信號(hào)進(jìn)行微弱故障特征的有效診斷。采用的信息融合故障診斷過程,即將振動(dòng)信號(hào)和壓力信號(hào)進(jìn)行小波消噪處理,利用統(tǒng)計(jì)分析提取有效特征信息,采用主成分分析(PrinciP81componentanalysis,PCA)有效解耦各故障特征間的相關(guān)性,減少故障特征的維數(shù),采用改進(jìn)算法的BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)液壓泵球頭松動(dòng)故障診斷。
3.1特征層信息融合
特征層狀態(tài)屬性融合就是將對(duì)多種類型傳感器數(shù)據(jù)進(jìn)行預(yù)處理以完成特征提取及數(shù)據(jù)配準(zhǔn),即通過傳感器信息轉(zhuǎn)換,把各傳感器輸人數(shù)據(jù)變換成統(tǒng)一的數(shù)據(jù)表達(dá)形式。
聯(lián)系電話:021-31666777
新聞、技術(shù)文章投稿QQ:3267146135 投稿郵箱:syy@gongboshi.com